skip to main content


Search for: All records

Creators/Authors contains: "Crawford, Kaitlyn E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Brain‐inspired (neuromorphic) computing that offers lower energy consumption and parallelism (simultaneous processing and memorizing) compared to von Neumann computing provides excellent opportunities in many computational tasks ranging from image recognition to speech processing. To accomplish neuromorphic computing, highly efficient optoelectronic synapses, which can be the building blocks of optoelectronic neuromorphic computers, are necessary. Currently, carbon nanotubes (CNTs), an attractive candidate to develop circuit‐level photonic synapses, provide weak light responses. The inferior photoresponse of CNTs increases the energy consumption of neuromorphic optoelectronic devices. Herein, a method to grow organic–inorganic halide perovskite quantum dots (PQDs) directly on multiwall CNTs (MWCNTs) to increase the photosensitivity of optoelectronic synapses is demonstrated. The new hybrid material synchronizes the high photoresponse of PQDs and the excellent electrical properties of MWCNTs to provide photonic memory under very low light intensity (125 µW cm−2). However, neat MWCNTs do not show any detectable light response at the tested light intensity, as high as 25 mW cm−2. Since the PQDs are grown directly on and in the MWCNTs, the hybrid PQD‐MWCNT provides a new direction for the future MWCNT‐based optoelectronic devices for neuromorphic computing with a potential to break the von Neumann bottleneck.

     
    more » « less